Spectrum Concentration in Deep Residual Learning: A Free Probability Approach
نویسندگان
چکیده
منابع مشابه
End-to-end Learning from Spectrum Data: A Deep Learning approach for Wireless Signal Identification in Spectrum Monitoring applications
This paper presents end-to-end learning from spectrum data an umbrella term for new sophisticated wireless signal identification approaches in spectrum monitoring applications based on deep neural networks. End-to-end learning allows to (i) automatically learn features directly from simple wireless signal representations, without requiring design of hand-crafted expert features like higher orde...
متن کاملHessian Free Deep Learning
Optimization techniques used in Machine Learning play an important role in the training of the Neural Network in regression and classification tasks. Predominantly, first order optimization methods such as Gradient Descent have been used in the training of Neural Networks, since second order methods, such as Newton’s method, are computationally infeasible. However, second order methods show muc...
متن کاملDeep Residual Learning and PDEs on Manifold
In this paper, we formulate the deep residual network (ResNet) as a control problem of transport equation. In ResNet, the transport equation is solved along the characteristics. Based on this observation, deep neural network is closely related to the control problem of PDEs on manifold. We propose several models based on transport equation, Hamilton-Jacobi equation and Fokker-Planck equation. T...
متن کاملMelanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملPosterior Concentration for Sparse Deep Learning
Spike-and-Slab Deep Learning (SS-DL) is a fully Bayesian alternative to Dropout for improving generalizability of deep ReLU networks. This new type of regularization enables provable recovery of smooth input-output maps with unknown levels of smoothness. Indeed, we show that the posterior distribution concentrates at the near minimax rate for α-Hölder smooth maps, performing as well as if we kn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2931991